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Abstract 

The regional concentration of airborne ultrafine particulate matter mass (Dp < 0.1 µm; PM0.1) 

was predicted with 4km resolution in 39 cities across the United States during summer time air 

pollution episodes.  Calculations were performed using a regional chemical transport model with 15 

4 km spatial resolution operating on the National Emissions Inventory created by the US EPA. 

Measured source profiles for particle size and composition between 0.01 – 10 µm were used to 

translate PM total mass to PM0.1.  PM0.1 concentrations exceeded 2 µg m-3 during summer 

pollution episodes in major urban regions across the US including Los Angeles, the San 

Francisco Bay Area, Houston, Miami, and New York.  PM0.1 spatial gradients were sharper than 20 

PM2.5 spatial gradients due to the dominance of primary aerosol in PM0.1.  Artificial source tags 

were used to track contributions to primary PM0.1 and PM2.5 from fifteen source categories. As 

expected, on-road gasoline and diesel vehicles made significant contributions to regional PM0.1 

in all 39 cities even though peak contributions within 0.3 km of the roadway were not resolved 

by the 4 km grid cells.  Food cooking also made significant contributions to PM0.1 in all cities but 25 

biomass combustion was only important in locations impacted by summer wildfires.  Aviation 

was a significant source of PM0.1 in cities that had airports within their urban footprints. 

Industrial sources including cement manufacturing, process heating, steel foundries, and paper & 

pulp processing impacted their immediate vicinity but did not significantly contribute to PM0.1 

concentrations in any of the target 39 cities. Natural gas combustion made significant 30 

contributions to PM0.1 concentrations due to the widespread use of this fuel for electricity 

generation, industrial applications, residential, and commercial use.  The major sources of 

primary PM0.1 and PM2.5 were notably different in many cities.  Future epidemiological studies 

may be able to differentiate PM0.1 and PM2.5 health effects by contrasting cities with different 

ratios of PM0.1 / PM2.5.  In the current study, cities with higher PM0.1 / PM2.5 ratios include 35 

Houston TX, Los Angeles CA, Birmingham AL, Charlotte NC, and Bakersfield CA.  Cities with 

lower PM0.1 to PM2.5 ratios include Lake Charles LA, Baton Rouge LA, St. Louis MO, Baltimore 

MD, and Washington DC. 
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1. Introduction 
Airborne particulate matter (PM) has been linked with premature mortality and numerous 

other health risks in cities across the world (see for example references (Laden, Neas et al. 2000, 

Pope, Burnett et al. 2002, Dominici, Peng et al. 2006, Ostro, Broadwin et al. 2006, Franklin, 

Zeka et al. 2007, Pope, Ezzati et al. 2009, Kheirbek, Wheeler et al. 2013, Aneja, Pillai et al. 45 

2017)). Despite years of progress (EPA 2017), PM concentrations in many urban regions in the 

United States still exceed health-based standards resulting in an increase of non-accidental 

mortality (Franklin, Zeka et al. 2007, Baxter, Duvall et al. 2013). Toxicology testing suggests 

that ultrafine particles with diameter < 0.1 µm may be the most harmful size fraction within 

PM2.5 (Oberdorseter, Gelein et al. 1995, Pekkanen, Timonen et al. 1997, Oberdurster 2000, Li, 50 

Siotas et al. 2003, Ostro, Hu et al. 2015).  Initial attempts to analyze ultrafine particles in 

epidemiology studies have used particle number concentration as a surrogate for ultrafine 

particle exposure, but this approach has not found consistent relationships with health effects 

(Ostro, Hu et al. 2015).  In contrast, a recent epidemiology study based on ultrafine particle mass 

(PM0.1) found significant associations with premature mortality (Ostro, Hu et al. 2015).  Follow-55 

up studies have also found significant associations between PM0.1 and reproductive outcomes 

including birth weight and preterm birth (Bergin, Russell et al. 1996, Laurent, Hu et al. 2016).  

These findings have biological plausibility, since ultrafine particles may cross cell membranes 

and interfere with the internal cell function (Sioutas, Delfino et al. 2005). The toxic material 

found in ultrafine particles has greater surface area due to the small particle diameter making the 60 

material more available for chemical reaction.  Ultrafine particles can therefore have a larger 

impact when deposited deep into the lung cavity where they are not easily removed (Li, Siotas et 

al. 2003, Nel, Xia et al. 2006).  

A national monitoring network for PM10 and PM2.5 has been operating throughout the 

continental US for almost 20 years.  Multiple studies have performed source apportionment 65 

calculations for coarse and fine PM using these measurements (Zheng, Cass et al. 2002, Reff, 

Bhave et al. 2009, Ham and Kleeman 2011, Zhang, Hu et al. 2014). In contrast, measurements of 

PM0.1 are limited to focused field campaigns lasting for short time periods with even fewer 

studies attempting source apportionment calculations (Kleeman, Riddle et al. 2009).  Multiple 

barriers have prevented the widespread deployment of PM0.1 monitoring networks including (i) 70 

the low concentration of PM0.1 mass, which challenges the detection limits of analytical methods, 
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(ii) the artifacts associated with collecting PM0.1 samples, (iii) the additional workload involved 

in operating the collection devices, and (iv) the sharp spatial gradients of PM0.1 fields.  

Expensive investments in PM0.1 monitoring are unlikely to occur without compelling evidence 

linking PM0.1 to public health.  Early epidemiological studies for PM0.1 must therefore use some 75 

other technique besides direct measurements to calculate population exposure.  

Various methods such as the source-resolved PMCAMx chemical transport model, the 

chemical mass balance (CMB) model, photochemical box models and land use regression (LUR) 

models have been used to track source contributions to primary organic matter, elemental carbon 

and in some cases particle number concentration (PNC) over areas in the Eastern U.S. and parts 80 

of Europe and Asia (Gaydos, Stanier et al. 2005, Lane, Pinder et al. 2007, Wang, Hopke et al. 

2011, Posner and Pandis 2015, Cattani, Gaeta et al. 2017, Wolf, Cyrys et al. 2017, Simon, Patton 

et al. 2018, Zhong, Nikolova et al. 2018). However, these methods are limited in one or more 

aspects of their ability to predict population exposure ultrafine particles over large analysis 

domains. Source resolved models, such as PMCAMx, have been demonstrated for PNC but not 85 

for PM0.1 (Posner and Pandis 2015). CMB models need measurements of specific molecular 

markers at numerous sites to resolve the sharp spatial gradients of ultrafine particle source 

contributions.  LUR models need comprehensive measurements that act as training data sets in 

order to extend throughout a modeling domain (Lane, Pinder et al. 2007).  

Hu et al. (Hu, Zhang et al. 2014) calculated population exposure to PM0.1 in California 90 

using a regional source-oriented chemical transport model supported by measured profiles for 

particle size and composition emitted by dominant sources.  Predictions were compared to all 

available fine and ultrafine particle measurements over the period 2000-2010 with good 

agreement observed for the dominant chemical components of PM0.1 mass including organic 

aerosol, elemental carbon, and numerous trace metals (Hu, Zhang et al. 2014).  The 4km spatial 95 

resolution used in these calculations supported multiple epidemiological studies based on spatial 

gradients of exposure (Ostro, Hu et al. 2015, Laurent, Hu et al. 2016).  These encouraging results 

motivate the expansion of the PM0.1 exposure technique to other locations. 

Here we use the Eularian source-oriented UCD/CIT chemical transport model to predict 

the concentration of PM0.1 in thirty-nine urban regions throughout the US during summer 100 

pollution events in 2010. The calculation tracks contributions from fifteen (15) primary particle 

sources through a simulation of all major atmospheric processes while retaining information 
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about particle size, composition and source origin (Hu, Zhang et al. 2014). The results of this 

calculation reveal US national trends in PM0.1 concentrations for the first time and suggest 

locations where the differential health effects of PM0.1 and PM2.5 can best be studied.   105 

 

2. Methods 
2.1 Simulation Dates 

Simulations within each target city were carried out during peak summer air pollution 

events in 2010.  Peak air pollution events typically had measured 1-hr maximum ozone (O3) 110 

concentrations greater than 70 ppb. Regional pollution events caused by atmospheric stagnation 

were selected whenever possible as opposed to special events caused by unusual occurrences 

such as wildfires.  Measured PM2.5 24-hr concentrations during peak summer pollution events 

ranged between 3.2-30 µg/m3 depending on the location. The simulation dates in each city are 

listed in Table 1 and a map of the city locations is shown in the supplemental information Figure 115 

S1.  The aggregation of these events across the US enables a comparison of typical air pollution 

episodes within different cities. 

 

Table 1. City, Simulation Date, 2010 Population and Geographical Region 

City 2010 Date 2010 
Population 

 
US Geographical 

Region 

Atlanta March 29 - April 1 422765 South East 
Austin August 23 - August 26 815260 South 

Bakersfield August 23 - August 26 348938 West 
Baltimore August 7 - August 10 621210 East Coast 

Baton Rouge October 6 - October 9 229584 South 
Birmingham October 6 - October 9 212107 South East 

Boston August 29 - September 1 620451 East Coast 
Charlotte March 30 - April 2 738710 South East 
Cincinnati August 25 - August 28 296904 Midwest 
Cleveland August 25 - August 28 396009 Midwest 

Dallas August 23 - August 26 1201000 South 
Denver July 13 - July 16 603421 West 
Detroit August 25 - August 28 711299 Midwest 
El Paso July 11 - July 14 651665 West 
Fresno August 23 - August 26 497090 West 
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City 2010 Date 2010 
Population 

 
US Geographical 

Region 

Hartford August 29 - September 1 125312 East Coast 
Houston October 6 - October 9 2103000 South 

Indianapolis August 25 - August 28 830952 Midwest 
Jacksonville March 29 - April 1 823291 South East 
Kansas City August 25 - August 28 460639 Midwest 
Lake Charles October 6 - October 9 72268 South 
Los Angeles September 23 - September 26 3796000 West 
Louisville August 7 - August 10 300000 Midwest 
Memphis October 6 - October 9 647609 Midwest 

Miami March 30 - April 2 400769 South East 
Nashville October 7 - October 10 1800000 Midwest 

New York City August 29 - September 1 8190000 East Coast 
Philadelphia August 27 - August 30 1529000 East Coast 

Phoenix June 19 - Jun3 22 1449000 West 
Portland August 23 - August 26 585286 West 

Richmond August 7 - August 10 204351 East Coast 
Sacramento August 22 - August 25 466488 West 

Salt Lake City August 18 - August 21 186505 West 
San Antonio August 23 - August 26 1334000 South 
San Diego September 23 - September 26 1306000 West 

San Francisco August 22 - August 25 805704 West 
St. Louis August 25 - August 28 319257 Midwest 

Tulsa August 25 - August 28 392443 Midwest 
Washington DC August 7 - August 10 604453 East Coast 

120 

 

2.2 Model Description 
The UCD/CIT model predicts the evolution of gas and particle phase pollutants in the 

atmosphere in the presence of emissions, transport, deposition, chemical reaction and phase 

change (Held, Ying et al. 2005) as represented by Eq. (1) 125 

 
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

+ ∇ ∙ 𝑢𝑢𝐶𝐶𝑖𝑖 = ∇𝐾𝐾∇𝐶𝐶𝑖𝑖 + 𝐸𝐸𝑖𝑖 − 𝑆𝑆𝑖𝑖 + 𝑅𝑅𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔(𝐶𝐶) + 𝑅𝑅𝑖𝑖

𝑝𝑝𝑔𝑔𝑝𝑝𝜕𝜕(𝐶𝐶) + 𝑅𝑅𝑖𝑖
𝑝𝑝ℎ𝑔𝑔𝑔𝑔𝑎𝑎(𝐶𝐶)   (1) 
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where Ci is the concentration of gas or particle phase species i at a particular location as a 

function of time t, u is the wind vector, K is the turbulent eddy diffusivity, Ei is the emissions 130 

rate, Si is the loss rate, Rigas is the change in concentration due to gas-phase reactions, Ripart is the 

change in concentration due to particle-phase reactions and Riphase is the change in concentration 

due to phase change (Held, Ying et al. 2005).  Loss rates include both dry and wet deposition. 

Phase change for inorganic species occurs using a kinetic treatment for gas-particle conversion 

(Hu, Zhang et al. 2008) driven towards the point of thermodynamic equilibrium (Nenes, Pilinis 135 

et al. 1998).  Phase change for organic species is also treated as a kinetic process with vapor 

pressures of semi-volatile organics calculated using the 2-product model (Carlton, Bhave et al. 

2010). More sophisticated approaches for secondary organic aerosol (SOA) formation (Cappa, 

Jathar et al. 2016) were also tested in the current study but these required a larger number of 

assumptions and they did not produce higher SOA concentrations in the PM0.1 size fraction.  140 

Nucleation was not included in the current study and so particle number concentrations will not 

be discussed.  Likewise, model spatial resolution was 4km over the 4.2 million km2 of simulated 

urban areas and so near-roadway concentrations of ultrafine particles on spatial scales of ~0.1 km 

will not be presented.   

A total of 50 particle-phase chemical species are included in each of 15 discrete particle 145 

size bins that range from 0.01-10 µm particle diameter (Held, Ying et al. 2005). Artificial source 

tags are used to quantify source contributions to the primary particle mass for a specific bin size, 

therefore allowing for the direct contribution of each source of PM2.5 and PM0.1 mass to be 

determined. Gas-phase concentrations of oxides of nitrogen (NOx), volatile organic compounds 

(VOCs), oxidants, ozone, and semi-volatile reaction products were predicted using the SAPRC-150 

11 chemical mechanism (Carter and Heo 2013).   

 

2.3 Model Inputs 
Anthropogenic emissions were generated using the Sparse Matrix Operator Kernel 

Emissions (SMOKEv3.7) modeling system applied to the 2011 National Emissions Inventory. 155 

Emissions from each of the four major source sectors (area, mobile, non-road and point were 

tagged to create fifteen (15) different emissions groups: on road diesel, on road gasoline, off road 

diesel, off road gasoline, biomass, food cooking, natural gas, process heaters, distillate oil, 

aviation, cement, coal, steel foundries, paper products and all other emissions.  Size and 
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composition-resolved source profiles were then assigned to the PM emissions within each of 160 

these groups using the UCD/CIT emissions processor based on the most recent measurements 

available in the literature (Robert, VanBergen et al. 2007a, Robert, Kleeman et al. 2007b, 

Kleeman, Robert et al. 2008).  Some of the fifteen (15) source categories were represented using 

weighted average source profiles from multiple sources as described in Table S1. 

Daily values for 2010 wildfire emissions were generated using the Global Fire Emissions 165 

Database (GFED) (Giglio, Randerson et al. 2013).  Biogenic emission rates were generated using 

the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1). The gridded geo-

referenced emission factors and land cover variables required for MEGAN calculations were 

created using the MEGANv2.1 pre-processor tool and the ESRI_GRID leaf area index and plant 

functional type files available at the Community Data Portal (Guenther, Jiang et al. 2012).   170 

Meteorology parameters used to drive the UCD/CIT CTM were generated using the 

Weather Research and Forecasting model (WRFv3.6) and WRF preprocessing system 

(WPSv3.6). Meteorological fields were created within 3 nested domains with horizontal 

resolutions of 36km, 12km, and 4km, respectively.  Each domain had 31 telescoping vertical 

levels up to a top height of 12km.  Four-dimensional data assimilation (FDDA) or “FDDA 175 

nudging” was used to anchor meteorological predictions to measured values (Hu et al., 2010). 

Meteorological data and gridded map projections needed for 2010 emissions modeling were 

taken from the corresponding WRF simulations using the meteorology-chemistry interface 

processor (MCIP). 

 180 

2.3 Supporting Measurements 
Ambient hourly ozone measurements and daily PM2.5 measurements were obtained from 

the EPA AQS API / Query AirData (EPA).  Model predictions are compared to these 

measurements to build confidence in the accuracy of the overall modeling system since PM0.1 

measurements are not available during any of the peak summer pollution events studied here. 185 

 

3. Results 
Predicted 1-hr ozone concentrations were compared to measurements averaged within 

each city to indirectly evaluate the accuracy of the emissions inventories and meteorology fields.  

Many of the sources that emit ozone precursors also emit ultrafine particles.  Likewise, 190 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-833
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 3 September 2018
c© Author(s) 2018. CC BY 4.0 License.



9 
 

meteorological parameters including wind speed and mixing depth influence the concentrations 

of all pollutants including ultrafine particles.  Successful prediction of ozone is therefore a 

necessary step in the accurate prediction of ultrafine particle concentrations during summer 

photochemical smog episodes.  Figure 1 illustrates the time series of predicted vs measured 

ozone concentration for four (4) representative cities spanning the South, East, Midwest and 195 

West US regions. The full set of comparisons for all 39 cities are shown in the supplemental 

information Figure S2. In general, model simulations capture the peak ozone concentration and 

diurnal pattern during the pollution events. Mean fractional bias (MFB) and mean fractional error 

(MFE) summary statistics meet EPA criteria in 37 out of 39 cities (Table S2 in the supplemental 

information).   200 

Predicted 24-hr PM2.5 concentrations were compared to measurements as a second check 

on the accuracy of model features needed to predict ultrafine particle concentrations.  Many of 

the combustion sources that emit primary particles within the PM2.5 size fraction also emit PM0.1.  

The Chemical Speciation Monitoring Network (CSN) operated by the U.S. Environmental 

Protection Agency (EPA) measures PM2.5 mass and chemical composition at more than 260 sites 205 

throughout the U.S. including many of the 39 cities studied in the current analysis (Solomon, 

Crumpler et al. 2014). Elemental carbon (EC) and organic compounds (OC) are the chemical 

components most relevant for both the PM2.5 and the PM0.1 size fractions.  Figure 2 illustrates 

predicted vs measured 24-hr PM2.5 EC and OC concentrations for all 39 cities while Figure S3 

illustrates predicted vs. measured 24-hr PM2.5 total mass comparisons.  In general, the model 210 

slightly under predicts PM2.5 EC, OC, and mass with regression slopes ranging from 0.62 for EC 

to 0.97 for OC.  The negative bias in model predictions may stem from the 4km spatial averaging 

inherent in the calculations vs. the influence of sources closer than 4 km to the measurement site 

in the urban environment such as highways, restaurants, etc.  This trend is reflected in the 

performance of ozone predictions during the evening hours for Los Angeles and New York City 215 

(Figure 1), where measured ozone concentrations fall to zero due to titration from nearby NOx 

emissions while predicted ozone concentrations remain greater than zero due to dilution of NOx 

emissions within 4 km grid cells.  The MFB and MFE for PM2.5 predictions are summarized in 

the supplemental information Table S2.   

As was the case for ozone predictions, PM2.5 model performance meets EPA criteria 220 

(MFE<0.75) in 37 out of 39 cities, building confidence in the accuracy of the model results for 
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PM concentrations. MFB values lower than 0.15 and MFE values lower than 0.35 are considered 

the goal or “excellent” in model performance. In the current study, the average MFB and MFE 

across all 39 cities was 0.126 and 0.379 for O3, and -0.27 and 0.38 for PM2.5 respectively. 

PM0.1 measurements are not available for model evaluation in the 39 cities across the US 225 

in 2010 at the core of the current study, but measurements are available in California in the years 

2015 and 2016 that can serve to evaluate similar modeling procedures.  Yu et al. (Yu, Venecek et 

al. 2018) compared PM0.1 concentrations in Los Angeles, Fresno, East Oakland, and San Pablo, 

California predicted using the UCD/CIT air quality model to receptor-based source 

apportionment calculations based on measured concentrations of molecular markers in the 230 

ultrafine particle size fraction (Xue, Xue et al. 2018).  Good agreement was found between 

predictions from these two independent techniques for PM0.1 concentrations associated with 

gasoline engines, diesel engines, food cooking, wood burning, and “other sources”.  Further 

details of this comparison are provided by (Yu, Venecek et al. 2018).  This evaluation of the 

modeling procedures builds confidence in the PM0.1 source predictions across the US in the 235 

current study. 

Figure 3 illustrates a composite representation of PM2.5 and PM0.1 mass across the US 

during the summer pollution episodes listed in Table 1.  The spatial plot in Figure 3 is 

constructed using the intermediate 12km simulation results from multiple simulations stitched 

together to cover a broader geographical area.  Regional PM0.1 concentrations reach a maximum 240 

value of 5 µg m-3 in a few isolated grid cells with wildfires but concentrations generally exceed 2 

µg m-3 in major urban regions across the US including Los Angeles, the San Francisco Bay Area, 

Houston, Miami, and New York.  The comparison between PM2.5 mass (Figure 3a) and PM0.1 

mass (Figure 3b) shows that PM0.1 spatial gradients are sharper with less regional contributions 

between “hot spots”.  Locations in the Midwestern and Eastern US outside of cities with high 245 

PM2.5 concentrations due to secondary formation (sulfate and secondary organic aerosol) did not 

have corresponding high concentrations of PM0.1.  Most major urban centers had noticeable 

peaks of both PM2.5 and PM0.1.  This pattern presents a challenge for epidemiological studies 

seeking to differentiate the effects of PM2.5 and PM0.1 because the locations with differential 

exposure (high PM2.5 but low PM0.1) have low population density which will reduce the power of 250 

the analysis. 
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The UCD/CIT model explicitly tracks source contributions to particle mass in each size 

bin using artificial source tags.  Pie charts of PM2.5 and PM0.1 source contributions are illustrated 

in Figure 3 for selected major cities.  Pie charts for PM0.1 source contributions in all 39 US cities 

are shown in Figure 4. The detailed source profiles within each city are based on the nested 4km 255 

simulation results during the pollution events listed in Table 1. Source contribution spatial plots 

for the entire US are shown in the supplemental information Figures S4-S7 and pie charts for 

PM2.5 source contributions in all 39 US cities are shown in the supplemental information Figure 

S8.  As expected, on-road gasoline and diesel vehicles made significant contributions to regional 

PM0.1 in all 39 cities even though peak contributions within 0.3 km of the roadway were not 260 

resolved by the 4 km grid cells.  Food cooking also made significant contributions to PM0.1 in all 

cities but biomass combustion was only important in locations impacted by summer wildfires.  

Aviation was a significant source of PM0.1 in cities that had airports within their urban footprints. 

Industrial sources including cement manufacturing, process heating, steel foundries, and paper & 

pulp processing impacted their immediate vicinity but did not significantly contribute to PM0.1 265 

concentrations in any of the target 39 cities. Natural gas combustion made significant 

contributions to PM0.1 concentrations due to the widespread use of this fuel for residential, 

commercial, and industrial applications.  Natural gas contributions were especially significant in 

locations with high levels of industrial use such as chemical refineries or in locations with 

significant levels of natural gas fired power plants.   270 

The major sources of primary PM0.1 and PM2.5 were notably different in many cities 

(compare Figure 3a and 3b).  The sources that contribute most strongly to PM2.5 are on road 

diesel, gasoline, food cooking, coal and “other” which includes break and tire wear from mobile 

sources and dust. Natural gas combustion makes minor contributions to primary PM2.5 mass 

since particles from this source have a mass distribution peaking at ~0.05 µm particle diameter 275 

(Chang, Chow et al. 2004)  with all of the emitted mass in the PM0.1 size fraction.  In contrast, 

other combustion sources using more complex fuels such as on-road vehicles have a mass 

distribution peaking at ~0.1 µm with at least half the emitted mass outside the PM0.1 size fraction 

(Robert, VanBergen et al. 2007a, Robert, Kleeman et al. 2007b).  Likewise, food cooking 

contributes strongly to PM2.5 concentrations but the emitted particle mass distribution peaks at 280 

0.2 µm with the majority of the mass outside the PM0.1 size fraction.    
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Figure 1. Time series of 1-hr measured vs predicted ozone concentration (ppm) for 4 selected 
city scenarios representative of the major geographical regions across the Continental United 

States 290 
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(a) Organic Carbon 

 
 

 
(b) Elemental Carbon 

 
 

Figure 2. Predicted vs Measured (a) Organic Carbon and (b) Elemental Carbon (µg m-3) 
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 295 

 

Figure 3. (a) PM2.5 and (b) PM0.1 24-hr average mass (µg m-3) during summer air pollution event. 300 
Scale drawn to highlight all areas of US. Actual Max for (a) = 109.28 µg/m3 (b) = 7.71 µg/m3.   

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-833
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 3 September 2018
c© Author(s) 2018. CC BY 4.0 License.



15 
 

 

 
Figure 4. PM0.1 source contribution for 39 cities across the continental US  
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 305 

(a) PM2.5 

 
(b) PM0.1 

 

 

Figure 5. Population weighted average source contribution across the 39 major cities in the 
continental US for (a) PM2.5 and (b) PM0.1 
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4. Discussion 310 
Figure 5 illustrates the population-weighted average PM0.1 source contributions across all 

39 study cities shown in Table 1. This calculation highlights the importance of natural gas 

combustion particles in the PM0.1 size fraction and the minor role that these natural gas 

combustion particles play in the PM2.5 size fraction.  Natural gas typically consists of +93% 

methane with the balance of the fuel made up by higher molecular weight alkanes and trace 315 

impurities.  In addition to background sulfur compounds in the natural gas, sulfur-containing 

odorants such as mercaptans are commonly added to aid in leak detection.   

Natural gas combustion does not emit high amounts of particulate matter per J of energy 

in the fuel, but the widespread use of natural gas suggests that it could still contribute 

significantly to ambient PM0.1 concentrations.  Natural gas combustion accounted for 29% of 320 

total US energy consumption in 2016 (Energy 2017).  In contrast, gasoline combustion 

accounted for 17% of US energy consumption and diesel fuel combustion accounted for 

approximately 6% of US energy consumption in 2016.  Gasoline and diesel fuel combustion in 

motor vehicles also emit most particles in the size fraction larger than PM0.1 (Robert, VanBergen 

et al. 2007a, Robert, Kleeman et al. 2007b) whereas natural gas combustion emits particles 325 

entirely within the PM0.1 size fraction (Chang, Chow et al. 2004).  Taken together, these facts 

support the potential importance of natural gas combustion for ambient PM0.1 concentrations. 

The five (5) states with the highest consumption of natural gas in 2016 were Texas 

(14.7%), California (7.9%), Louisiana (5.7%), New York (5%), and Florida (4.8%). These 

consumption patterns are reflected in the natural gas distribution system (Figure 6a) and the 330 

predicted PM0.1 concentration field associated with natural gas combustion (Figure 6b).  Natural 

gas end-use included electric power generation (36%), industrial applications (34%), residential 

use (16%), commercial use (11%), and transportation (3%).  

 Lane et al. (2007) used a source-resolved version of PMCAMx and individual emission 

inventories to determine source contributions of primary organic material (POM2.5) (Lane, Pinder 335 

et al. 2007). Lane et al. note that POM2.5 associated with natural gas sources ranged from 0.1 to 

0.8 µg/m3 . Chang et al in 2004 measured emitted particle size distributions for gas-fired 

stationary combustion that fell between 10-100nm (Chang, Chow et al. 2004). The combination 

of these two results indicates that the natural gas mass component of POM2.5 predicted by Lane 

et al. is consistent with the magnitude of the PM0.1 mass associated with natural gas combustion 340 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-833
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 3 September 2018
c© Author(s) 2018. CC BY 4.0 License.



18 
 

found in the current study. Lane et al. were not studying PM0.1 and so the major role of natural 

gas in this size fraction was not identified. 

Posner and Pandis (2015) utilized PMCAMx with the LADCO 2001 BaseE source-

resolved mass emissions inventory for a July 2001 prediction of PNC over the Eastern United 

States with 36 km resolution (Posner and Pandis 2015). Posner and Pandis used a “zero-out” 345 

method in combination with source-specific size distribution to study the percent contribution of 

six major sources (on road gasoline, industrial, non-road diesel, on road diesel, biomass and dust) 

of PNC. They found that PNC was made up of 36% on-road gasoline, 31% industrial, 18% non-

road diesel, 10% on-road diesel, 1% biomass burning and 4% long-range transport (Posner and 

Pandis 2015). The emissions particle number inventory was normalized based on PM10 mass 350 

from each source and particle emissions from natural gas sources were assumed negligible, 

which effectively removed natural gas sources from the simulation.  This has minor effects on 

PM2.5 and PM10 predictions, but the results of the current study suggest that natural gas 

combustion contributions significantly to ultrafine particle concentrations.   

 355 
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(a) Natural Gas Compressor Stations and Pipelines throughout the U.S. (Map courtesy of U.S. 

Energy Information Administration)  

 
(b) UCD/CIT CTM Field Plot of PM0.1 from Natural Gas sources 

 
 

Figure 6. (a) Natural Gas compressor stations and pipelines across the US and (b) PM0.1 Natural 

Gas combustion concentrations (µg m-3). 360 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-833
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 3 September 2018
c© Author(s) 2018. CC BY 4.0 License.



20 
 

Future epidemiological studies may be able to differentiate PM0.1 and PM2.5 health effects by 

contrasting cities with different ratios of PM0.1 / PM2.5.  Figure 7 illustrates the correlation 

between PM2.5 and PM0.1 concentrations in the 39 cities considered in the current analysis.  Cities 

with higher PM0.1 / PM2.5 ratios include Houston TX, Los Angeles CA, Birmingham AL, 

Charlotte NC, and Bakersfield CA.  Cities with lower PM0.1 to PM2.5 ratios include Lake Charles 365 

LA, Baton Rouge LA, St. Louis MO, Baltimore MD, and Washington DC.  Measurements 

should be conducted in these locations to verify the contrast in PM0.1 / PM2.5 concentrations in 

preparation for future exposure analysis.   

 

 370 

Figure 7. Scatter plot showing correlation between 24-hr average PM2.5 and PM0.1 for the 39-
cities.  

 

Future epidemiological studies may also be able to use the contrast in PM0.1 source 

contributions between different cities to separately identify health effects.  In the current study, 375 

the similarity in PM0.1 source contributions between cities was calculated as a dot product.  A 
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source contribution vector was created for each city with 13 elements set equal to the normalized 

% contribution from each source.  The dot product of each city source-vector with other city 

source-vectors was then calculated using eq. (2) 

 380 

�⃗�𝑎  ∙  𝑏𝑏�⃗ = ‖�⃗�𝑎‖�𝑏𝑏�⃗ �cos (𝜃𝜃)      (2) 

 

where a�⃗  is the vector of city i, b�⃗  is the vector of source for city j, ‖a�⃗ ‖ is the magnitude of city i, 

�b�⃗ � is the magnitude of the vector for city j and θ is the angle between the two vectors ranging 

from 0 to 90º. cos(θ) quantifies the similarity in source contributions between the two cities. 385 

Rearranging Eq. (2) cos(θ) can be solved using Eq. (3) 

 

cos(𝜃𝜃) = ( 𝑔𝑔�⃗  ∙ 𝑏𝑏�⃗

‖𝑔𝑔�⃗ ‖�𝑏𝑏�⃗ �
)       (3) 

 

cos(θ) ranges between zero (0) for no correlation to one (1) for perfect correlation between the 390 

source vectors.  Figure 8 illustrates the value of cos(θ) calculated for city comparisons for PM0.1 

(lower left) and PM2.5 (upper right) source-vectors.  The cities were arranged by region defined 

in Table 1 and starting from East, South East, South, Midwest and West in order to observe any 

geographical patterns.  PM2.5 source-vectors were found to be slightly more homogenous across 

all U.S. cities than PM0.1 source vectors.  Regional clusters with similar source contributions are 395 

apparent, especially on the East Coast where cities are closer in proximity to one another.  Few 

regional clusters were observed for PM0.1 source vectors, suggesting that emissions control 

programs may need to be tailored to each region.  Natural gas combustion is prevalent in many 

locations, but the remaining sources of ultrafine particles vary strongly with location.    

 400 
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Figure 8. Normalized dot product between the 13 source types and each city for PM2.5 (upper 
right) and PM0.1 (lower left). The scale represents 100% (black) to 0% (white) correlation. Cities 405 

are organized by region in the following order: East, South East, South, Midwest and West. 

 

5. Conclusion 
The UCD/CIT regional chemical transport model was used to predict source 

contributions to PM0.1 across the continental United States during peak photochemical smog 410 

periods during the year 2010.  Model performance for PM2.5 and ozone predictions met the 

recommendations for regulatory applications building confidence in the emissions inputs and 

meteorological fields used to drive the calculations.  Similar model exercises carried out for 

episodes in California in 2015 and 2016 find good agreement between predicted PM0.1 source 
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contributions and receptor-based PM0.1 source contributions calculated using measured 415 

concentrations of molecular markers (Yu, Venecek et al. 2018).  Regional PM0.1 concentrations 

exceeded 2 µg m-3 during summer pollution episodes in major urban regions across the US 

including Los Angeles, the San Francisco Bay Area, Houston, Miami, and New York.  PM0.1 

spatial gradients were sharper than PM2.5 spatial gradients due to the dominance of primary 

aerosol in PM0.1.  This finding suggests that PM0.1 measurement networks needed to support 420 

epidemiology must be denser than comparable PM2.5 measurement networks.  Non-residential 

natural gas combustion was identified as a major source of PM0.1 across all major cities in the 

United States.  On-road gasoline and diesel vehicles made significant contributions to regional 

PM0.1 in all 39 cities even though peak contributions within 0.3 km of the roadway were not 

resolved by the 4 km grid cells.  This is consistent with other studies that have found an 425 

exponential decrease in ultrafine particle concentrations outside of major roadways (Wang, 

Hopke et al. 2011). Food cooking also made significant contributions to PM0.1 in all cities but 

biomass combustion was only important in locations impacted by summer wildfires.  Aviation 

was a significant source of PM0.1 in cities that had airports within their urban footprints.  The 

major sources of primary PM0.1 and PM2.5 were notably different in many cities.  Future 430 

epidemiological studies may be able to differentiate PM0.1 and PM2.5 health effects by contrasting 

cities with different ratios of PM0.1 / PM2.5 sources. 

 

Data Availability: All of the PM0.1 and PNC outdoor exposure fields produced in the current 

study are available free of charge at http://faculty.engineering.ucdavis.edu/kleeman/.   435 
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